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Abstract. We investigate the repulsion of random walks (RWS)  and self-avoiding walks 
(SAWS) induced by ( a )  excluding a single lattice point or ( b )  excluding all points on a 
half-line from --OO to the origin. For SAWS, we use exact enumeration and Monte Carlo 
methods to study the asymptotic behaviour of the displacement away from the excluded 
set on three-, four- and five-dimensional hypercubic lattices. When the SAW begins one 
lattice site away from an excluded point along the x direction, the mean displacement 
after N steps, ( x N )  approaches a finite limit, at a power-law rate, as N + a .  However, the 
distribution of projected displacements exhibits a residual asymmetry in the asymptotic 
limit, reflective of a long-range influence of the excluded point. This general pattern of 
behaviour also occurs for a purely random walk. For a SAW which starts one lattice spacing 
away from the axis of the excluded half-line, enumeration data suggest that the mean 
displacement along the axis diverges as N’, with Y =: in two dimensions, but as N‘, with 
z = 0.35, in three dimensions. This unexpected behaviour appears to be corroborated by 
constant-fugacity Monte Carlo data. However, for the corresponding RW model, both the 
solution to the diffusion equation and a heuristic argument indicate that (x,.,) diverges as 
N ” 2  in two dimensions, and as N’”/ln N in three dimensions. Large values of N are 
needed before indications of this asymptotic behaviour are seen numerically. Similar 
crossover effects may be masking the asymptotic behaviour in the SAW problem. 

1. Introduction 

In this paper, we investigate the repulsion of random walks (RWS) and self-avoiding 
walks (SAWS) from a single excluded point, and from an excluded half-line (figure 1). 
That is, the random walk is absorbed if it touches the excluded set, and we study the 
statistical properties of the untrapped walkers. This work is motivated by previous 
studies which have shown that for RWS or SAWS in two dimensions, the mean displace- 
ment away from an excluded point, ( x N ) ,  increases logarithmically in the number of 
steps, N [l, 21. These intriguing results lead us to undertake a more comprehensive 
investigation of the repulsion phenomenon, both as a function of the spatial dimension 
d, and as a function of the spatial extent of the excluded set. 

For random walks originating one lattice spacing away from an excluded point, 
Weiss [ 11 used generating function methods to calculate the mean longitudinal displace- 
ment after N steps, ( x N ) .  It was found that ( x N ) -  N’” for spatial dimension d = 1, 
( x N )  - In N for d = 2, while in higher dimensions, (x,) asymptotically saturates at a 
finite value. This pattern of behaviour as a function of d stems from the transition 
between transience and recurrence of random walks [3-51. For d s 2, a random walker 
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( a )  i b )  

Figure 1. A random or self-avoiding walk in the presence of ( a )  an excluded point and 
( b )  an excluded half-line. The average endpoint displacement and higher moments along 
the x axis are measured. 

is certain to visit any lattice site, so that if a particular site is excluded, the walks which 
do not touch this site must necessarily be repelled by it. On the other hand for d > 2, 
the probability of eventually hitting any site is less than unity, so that the exclusion 
of one site does not lead to long-range repulsion. 

For SAWS, the excluded site constraint is equivalent to fixing the direction of the 
first step, and the latter formulation is also known as the ‘persistence’ problem [2,6,7]. 
From this viewpoint, a basic question is how the initial directional bias is ‘remembered’ 
by the walk. For SAWS in two dimensions, it appears that ( x N )  - In N, while the higher 
odd moments, (xC+’), scale as NZk” In N. This behaviour arises from a distribution 
of projected displacements whose antisymmetric component is of the form [2]: A ( x )  - 
N-2“ In N exp(-bx/N”). 

In this work, we find that for SAW in the presence of an excluded point the repulsion 
weakens as the spatial dimension increases, as might be expected intuitively. Enumer- 
ation data indicate that ( x N )  approaches a finite dimension-dependent ‘presistence 
length’, A, as N + m ,  and that (x’,”’’) scales as Nzk”. Such a pattern of behaviour 
could arise by shifting the unperturbed SAW displacement distribution by the finite 
value of the persistence length. However, this trivial construction does not account 
for the divergence of the higher odd cumulants of the displacement distribution as 
N + -behaviour which is indicative of a distribution whose approach to symmetry 
about A is anomalously slow. 

More interesting behaviour occurs when the repulsion effect is stronger, as embodied 
by the excluded needle problem. For a walk which begins one lattice spacing away 
along the axis of the needle, the higher moments of the endpoint distribution, projected 
along the needle axis, (&+I) ,  appear to diverge as N(2k+’)” in d = 2, where v = is 
the correlation length exponent of two-dimensional SAWS. Thus the walk is repelled 
from the needle at the same rate at which the distribution spreads out. In d = 3 ,  our 
enumeration data suggests that (x%+’) - NZkvtz for k 3 0, with z = 0.35. This unusual 
behaviour in which an apparent new exponent appears is also supported by constant- 
fugacity Monte Carlo simulations. This approach indicates that the antisymmetric 
component of the distribution of endpoint displacements, projected along the needle 
axis, is quite accurately fitted by the exponential form A ( x )  - Nz-*” exp[-bx/N”], 
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where i’? is the average value of the number of steps in the walk at a fixed value of 
the fugacity per step, and b is a constant. 

The potential existence of a new exponent leads us to study the corresponding 
problem of a R W  in the presence of an excluded needle, both analytically and numeri- 
cally. For the excluded needle, we give a heuristic argument which suggests that ( x N )  
diverges as NI/’ in d = 2, and as N’/’/ln N in d = 3. For the more general case of a 
diffusing particle exterior to an excluded wedge (cone for d = 3) of arbitrary opening 
angle eo, the solution to the corresponding diffusion equation shows that the survival 
probability depends on B o ,  but that that ( X ~ ) - A ( ~ ~ ) N ’ ” .  The amplitude A(Bo) is a 
smooth, non-singular function of Bo in two dimensions, but in three dimensions A( 0,) 
vanishes logarithmically in Bo in the excluded needle limit. This asymptotic behaviour 
is not manifested in the numerical data until relatively large N ( N  = 25 and N 3 100, 
respectively, for d = 2 and 3). This slow crossover casts doubt on the aforementioned 
SAW results, which are based on relatively short series. 

We first outline some new features of our enumeration method in § 2, and present 
data and analysis for SAWS in the presence of an excluded point and an excluded 
needle in §§ 3 and 4. We also describe and analyse Monte Carlo simulations which 
support the enumeration results for three-dimensional SAWS in the presence of an 
excluded needle. In § 5, we present analytical results for the persistence of random 
walks with no immediate returns allowed, and for random walks in the presence of 
an excluded point and excluded needle. These results are compared with the behaviours 
found in the corresponding SAW problem. We summarise in 0 6 and discuss our 
numerical results for SAWS in light of the slow approach to asymptotic behaviour found 
for RW models. 

2. Enumeration data and analysis 

We have enumerated SAWS in the presence of an excluded point, and in the presence 
of an excluded line on hypercubic lattices for d = 2-5. We used a standard enumeration 
program [ 8,9], augmented by two time-saving modifications, which we briefly outline, 
as they may be of general interest. First, as the spatial dimension increases, it becomes 
relatively more advantageous to classify SAWS according to symmetry to a larger number 
of steps. For example, when the first step of the walk is fixed, then on the simple 
cubic lattice, there are five two-step SAWS, only two of which are topologically distinct. 
At three and four steps, there are, respectively, 6 and 22 topologically distinct SAWS 
out of 25 and 121 possible walks. Thus by enumerating only those SAWS built from the 
22 distinct four-step bases, one needs to enumerate only 6 = 0 . 3  of all possible SAW. 

In four and five dimensions, this four-step classification leads to a savings factor of 

classification. This symmetry classification leads to an enumeration time for SAWS of 
fixed number of steps which increases relatively slowly with the spatial dimension. In 
principle, it is possible to enumerate 13- or 14-step SAWS in arbitrary dimension with 
little additional resources beyond those used for the lower-dimensional enumerations. 

With this improvement, however, memory requirements now become a significant 
limiting factor, as our check for a self-intersection in an N-step SAW is based on storing 
a hypercube of linear dimension 2N. This requirement can be reduced by shifting the 
origin of each SAW so that the fifth step of the walk (which is the starting point of the 
enumeration in a four-step classification scheme) begins at the centre of the hypercube. 
By this device, a hypercube of linear dimension 2 ( N  -4 )  needs to be stored for 

_- 3’j: - 0.068, and $ 5  0.032, respectively, compared with a program with no symmetry 
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Table I. Enumeration data for the first three odd moments of the distribution of endpoint 
displacements along the x axis, for SAWS on hypercubic lattices, when the walk starts at 
the origin with an excluded site at x = -1. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
I7 

0.200 00d + 00 
0.240 OOd +00 
0.289 26d + 00 
0.298 81d+00 
0.323 64d + 00 
0.328 05d + 00 
0.342 39d + 00 
0.345 O2d +00 
0.354 38d +00 
0.356 23d+00 
0.362 85d + 00 
0.364 23d + 00 
0.369 19d +00 
0.370 28d + 00 
0.374 12d+00 
0.375 Old+00 
0.378 09d + 00 

0.200 OOd + 00 
0.480 OOd +00 
0.884 30d +00 
0.133 79d+Ol 
0.187 20d+Ol 
0.243 13d +01 
0.305 12d + 01 
0.368 51d+01 
0.436 79d +01 
0.505 98d +01 
0.579 26d + 01 
0.653 15d +01 
0.730 57d +01 
0.808 42d + 01 
0.889 37d +01 
0.970 62d +01 
0.10547d+02 

0.200 OOd + 00 
0.144 OOd +01 
0.425 62d +01 
0.916 13d+01 
0.16786d+02 
0.273 69d +02 
0.415 86d + 02 
0.594 50d +02 
0.817 Old +02 
0.108 17d+03 
0.139 68d + 03 
0.175 89d+03 
0.217 71d+03 
0.264 67d + 03 
0.317 74d+03 
0.376 35d +03 
0.441 52d +03 

Four dimensions 

1 0.14286d+00 0.142 86d+00 
2 0.163 27d+00 0.285 71d+00 
3 0.18694d+00 0.471 81d+00 
4 0.190 27d + 00 0.665 52d + 00 
5 0.200 00d + 00 0.880 21 d + 00 
6 0.201 20d +00 0.109 76d +01 
7 0.20648d+00 0.132 84d+Ol 
8 0.207 13d+00 0.15603d+01 
9 0.210 36d +00 0.180 17d +01 

10 0.210 77d + 00 0.204 37d +01 
11 0.21293d+00 0.229 28d+01 
12 0.213 22d+00 0.25422d+01 
13 0.21475d+OO 0.279 72d+01 
14 0.21496d+00 0.305 25d+01 

Five dimensions 

0.142 86d +00 
0.775 51d+00 
0.19674d+01 
0.380 63d + 01 
0.638 69d +01 
0.973 64d + 01 
0.13944d+02 
0.19002d+02 
0.249 98d +02 
0.319 03d + 02 
0.398 05d + 02 
0.48661d+02 
0.585 61d+02 
0.694 52d +02 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.111 l l d + 0 0  
0.11235d+00 
0.11373d+00 
0.11388d+00 
0.1 14 36d +00 
0.1 14 40d + 00 
0.1 14 63d +00 
0.114 65d+00 
0.114 79d+00 
0.1 14 80d +00 
0.114 88d +00 
0.114 89d+00 
0.11495d +00 

0.111 l l d + 0 0  
0.19753d+00 
0.303 74d +00 
0.409 65d + 00 
0.523 57d +00 
0.637 19d +00 
0.755 15d+00 
0.872 87d +00 
0.993 34d + 00 
0.111 36d+01 
0.123 58d +01 
0.135 78d+01 
0.148 13d +01 

0.111 l l d + 0 0  
0.493 83d + 00 
0.113 59d +01 
0.205 32d +01 
0.326 60d +01 
0.477 79d +01 
0.660 74d + 01 
0.875 l l d + O l  
0.1 12 26d +02 
0.14025d+02 
0.171 64d +02 
0.206 34d + 02 
0.244 51 d +02 
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Table 2. Enumeration data for the first three odd moments of the distribution of endpoint 
displacements along the x axis, for SAWS on the square, simple cubic and hypercubic 
lattices, when the half-line from -m to the origin is excluded, and the walker starts from 
the origin. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

0.333 33d + 00 0.333 33d + 00 
0.44444d+00 0.111 l l d + 0 1  
0.600 OOd +00 0.252 OOd +01 
0.724 64d + 00 0.472 46d + 01 
0.841 27d+00 0.769 84d +01 
0.94369d+00 0.11464d+02 
0.10502d+01 0.16087d+02 
0.114 89d +01 0.216 OOd +02 
0.12472d+01 0.280 17d+02 
0.13404d+01 0.353 67d+02 
0.143 29d+Ol 0.43663d+02 
0.15225d+01 0.52947d+02 
0.161 08d+Ol 0.632 l l d + 0 2  
0.169 70d +01 0.745 05d +02 
0.178 19d+Ol 0.868 12d+02 
0.186 53d +01 0.100 19d +03 
0.19475d+01 0.11461d+03 
0.202 85d +01 0.130 13d +03 
0.210 84d +01 0.146 72d +03 
0.218 72d+01 0.16444d+03 
0.22651d+01 0.18326d+03 
0.234 21d+01 0.203 25d +03 
0.241 81d +01 0.224 35d +03 
0.249 35d +01 0.246 64d +03 

Three dimensions 

0.333 33d +00 
0.377 78d + 01 
0.150OOd+02 
0.415 94d +02 
0.941 74d + 02 
0.184 50d +03 
0.326 90d +03 
0.537 41 d + 03 
0.834 02d +03 
0.123 64d +04 
0.17656d+04 
0.24451d+04 
0.329 85d +04 
0.435 33d +04 
0.563 54d + 04 
0.717 61d+04 
0.900 32d +04 
0.111 52d+05 
0.136 52d +OS 
0.165 44d + 05 
0.198 57d +OS 
0.236 36d +OS 
0.279 13d +OS 
0.327 35d + 05 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.200 OOd + 00 
0.240 OOd + 00 
0.289 26d + 00 
0.314 53d +00 
0.343 09d + 00 
0.365 36d + 00 
0.387 30d +00 
0.405 51d+OO 
0.423 57d + OO 
0.439 34d + 00 
0.454 90d + 00 
0.468 95d + 00 
0.482 75d +00 
0.495 46d + 00 
0.507 93d +00 
0.519 56d+00 
0.531 OOd + 00 

0.200 OOd +00 
0.480 OOd + 00 
0.884 30d + 00 
0.140 17d +01 
0.199 68d +01 
0.268 18d +01 
0.344 13d +01 
0.427 10d + 01 
0.516 48d +01 
0.612 15d+01 
0.713 57d +01 
0.820 72d +01 
0.933 15d+01 
0.105 09d +02 
0.11735d+02 
0.130 10d+02 
0.143 31d+02 

0.200 OOd +00 
0.144 OOd +01 
0.425 62d +01 
0.944 27d + 01 
0.177 36d +02 
0.297 15d +02 
0.461 57d +02 
0.676 41d +02 
0.947 83d + 02 
0.128 18d+03 
0.168 39d +03 
0.216Old+03 
0.271 54d +03 
0.335 57d + 03 
0.408 57d + 03 
0.491 l l d + 0 3  
0.583 64d +03 

Four dimensions 

1 0.142 86d+00 0.14286d+OO 0.142 86d+00 
2 0.163 27d +00 0.285 71d + OO 0.775 51d +00 
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Table 2. (continued) 

Four dimensions 

N 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
I 3  

(XN ) 

0.18694d+00 
0.195 94d +00 
0.206 59d + 00 
0.213 l l d + 0 0  
0.219 99d +00 
0.225 10d + 00 
0.230 24d + 00 
0.234 34d + 00 
0.238 42d +00 
0.241 82d + 00 
0.245 20d + 00 

(XkO 

0.471 81d+00 
0.687 96d + 00 
0.918 12d+00 
0.116 71d+01 
0.142 71d+01 
0.16997d+01 
0.198 15d+01 
0.227 25d +01 
0.257 12d +01 
0.287 72d +01 
0.31896d+01 

(X’,) 

0.19674d+01 
0.389 90d +01 
0.664 83d +01 
0.102 87d +02 
0.149 17d+02 
0.205 76d + 02 
0.273 39d +02 
0.352 46d +02 
0.443 47d + 02 
0.546 79d + 02 
0.662 84d + 02 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.111 l l d + 0 0  
0.123 45d +00 
0.13731d+00 
0.141 50d+00 
0.14657d+00 
0.149 l l d + 0 0  
0.151 90d+00 
0.153 65d+00 
0.155 49d+00 
0.156 78d + 00 
0.158 l l d + 0 0  
0.159 l l d + 0 0  
0.160 13d+00 

Five dimensions 

0.111 l l d + 0 0  
0.197 53d+00 
0.303 74d + 00 
0.420 13d +00 
0.539 69d +00 
0.664 82d +00 
0.791 86d + 00 
0.921 94d+00 
0.105 36d +01 
0.11872d+Ol 
0.132 21d+01 
0.145 83d +01 
0.159 55d +01 

0.111 l l d + 0 0  
0.493 83d +00 
0.113 59d+01 
0.209 57d + 01 
0.336 98d +01 
0.497 65d + 01 
0.693 20d + 01 
0.923 82d +01 
0.119 10d+02 
0.14948d+02 
0.183 62d+02 
0.221 54d + 02 
0.263 30d + 02 

performing the self-intersection check. A further saving of memory is possible by 
storing a hyperdiamond rather than a hypercube, thereby eliminating inaccessible 
corners, but we did not pursue this option. 

A second noteworthy point is that most of the time in the enumeration is spent in 
constructing the last step in the walk; this is especially true in higher dimensions. Thus 
improvements in the efficiency of this small portion of the code will reap significant 
savings in computer time. Our approach is based on ‘unrolling’ the last (or last two) 
do-loops implicit in the enumeration algorithm. It is then possible to count the number 
of N-step (or ( N  - 1)-step) SAWS with arithmetic statements only, rather than using 
the conditional statements that the algorithm normally employs to build each step of 
a SAW. By this technique, the computer time needed to enumerate N-step walks is, 
in general, only marginally longer than the time needed to enumerate ( N  - 1)-step 
walks, when the unrolling device is not employed. 

With an excluded point, we obtained the distribution of endpoint displacements, 
projected along the direction of the first step, P N ( x ) ,  for N S  17, 14 and 13, for d =3,  
4 and 5 ,  respectively. These enumerations required approximately 12.5, 16 and 19.5 
hours of CPU time on an IBM 3090 computer. Similarly, for the excluded needle 
problem, we obtained the distribution of endpoint displacements, projected along the 
needle axis, for N S24,  17, 13 and 13 steps for d =2,  3, 4 and 5, respectively. The 
first three odd moments of these two distributions are given in tables 1 and 2. 
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3. SAWS in the presence of an excluded point 

The data of table 1 illustrate that the first moments of the displacement distribution 
grow very slowly with N, while the higher odd moments increase at a much faster rate. 
Using a variety of analysis methods, ( x N )  can be well fitted by the form 

( x N )  = A (1  -  AN-^) (1) 
where A and A are lattice- and dimension-dependent constants, and where we expect 
that A will depend only on the spatial dimension (table 3).  Our result for the first 
moment in three dimensions is in agreement with earlier work by Grassberger [6]. 

In contrast, the higher odd moments appear to follow the power-law form 

( x z + l )  - N Z k “ .  ( 2 )  
This qualitatively parallels the behaviour found for two-dimensional SAW, except for 
the absence of logarithmic factors. To test the validity of (21, we studied the ratios 

According to (2),  the numerator has the same asymptotic behaviour as the denominator, 
and r N ( k )  should approach a constant as N +Co. As a function of N, we find that 
r N ( k )  is a weakly increasing sequence, whose rate of increase slows for larger values 
of N. Series analysis indicates that this rate of growth is slower than a power law in 
N, and on this basis, it appears that ( x ’ , ” ’ ’ ) - ( x ~ ) ~  - N2k” , asymptotically, with no 
logarithmic factors present, as in the two-dimensional case, although appreciable 
non-asymptotic corrections do exist. 

Table 3. Estimates of the values of A and S for SAWS with an excluded point, and the 
persistence lengths, A ,  for SAWS, for random walks with no immediate returns (RWNR),  
and for random walks with an excluded point (RWEP). 

A 

d A A SAW RWNR RWEP 
~ ~ 

3 0.29 * 0.04 0.76 * 0.06 0.42 * 0.01 a 0.516.. . 
4 0.15i0.03 1.0510.10 0.22i0.01 0.25 
5 O.lliO.03 1.50*0.10 0.1510.01 0.15 

This pattern of behaviour for the moments could arise by shifting the unperturbed 
SAW endpoint displacement distribution by the persistence length. To test for this 
trivial possibility, we investigate the symmetry of the displacement distribution about 
the persistence length by studying the higher cumulants 

which would all vanish if the distribution were symmetric about ( x N ) .  The data for 
K N (  k )  suggest that they all diverge to -CO as N + CO, except in five dimensions, where 
~ N ( k ) + + w  for k z 5 .  The absence of perfect symmetry in the distribution in the 
asymptotic limit is indicative of vestiges of the initial bias in the walk. However, this 
divergence of the cumulants is sufficiently slow that the skewness of the distribution, 
S = ~ ~ ( 3 ) / ~ ~ ( 2 ) ~ ” ,  still vanishes as N +  W. Thus the distribution asymptotically 
becomes symmetric, but only at a relatively slow rate. 

K N ( ~ ) = ( ( x N  - (xN)Ik )  (4) 
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4. SAWS in the presence of an excluded needle 

The primary qualitative difference between the data for the excluded needle and 
excluded point geometries is that the first moment in the excluded needle problem 
increases more rapidly, and at a rate that is consistent with a power-law divergence. 
In two dimensions, straightforward analysis of the data indicates that ( x N )  - N u ,  where 
Y =a, and more generally, (xz+ ' )  - N'zk+l)". Thus the repulsion induced by the needle 
gives rise to a mean displacement which is as rapid as the spread of the probability 
distribution of an unperturbed SAW itself. In three dimensions, the situation is consider- 
ably more interesting (figure 2). Our Neville-table analysis indicates that ( x N )  - N', 
with z = 0.35, while the higher odd moments appear to scale as (x?+l) - Nr+2k". Thus 
it appears that a new exponent, z, in addition to the correlation exponent v, is needed 
to account for all the moments of the displacement distribution. 

1 .o 

0.8 
0 75- 

0.6 

"N 

0.4 

0.2 

0 

(01 

* .  %. . 

0 2  0 4  0 6  0 8  
1 /N 

0.5 
i b) 

0 0 2  0 4  0 6  O B  
1/N 

Figure 2. Enumeration results for SAWS in the presence of an excluded needle. Shown 
are the finite-N estimates for the exponents describing the divergence of the odd moments 
of the displacement distribution, plotted against 1/ N. The arrows show the estimates for 
the asymptotic values of the exponents based on Neville-table analysis. 

To corroborate this unusual behaviour, we have also performed constant-fugacity 
Monte Carlo simulations for three-dimensional excluded needle geometry. The con- 
stant-fugacity method generates an unbiased ensemble of SAWS, in which each step of 
the walk has a fugacity per step, p ,  so that each N-step SAW has a relative weight of 
p N .  The average number of steps in the ensemble of walks, fi( p), varies as ( p  - p C ) - l ,  

with p c  = l / p  = 0.2135 [7]. We simulated extensively for p in the range 0.13-0.206, 
corresponding to N ( p )  d 32. This simulation method is of sufficient accuracy that it 
can be used to effectively augment the enumeration data. 

We measured the fugacity-dependent distribution of endpoint displacements, 
P(x, p), projected along the axis of the needle. This distribution can be decomposed 
into a symmetric S ( x ,  p )  = i [ P ( x ,  p ) +  P(-x, p ) ] ,  and an antisymmetric component, 
A(x,  p )  = f [ P ( x ,  p )  - P ( - x ,  p ) ] ,  respectively, with the behaviour of the odd moments 
of the distribution being governed solely by A(x,  p ) .  Figure 3 suggests that A(%, p) 
is a pure exponential function 

A(x, p )  = A ( p )  e-a(p)x. (5) 
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X 

Figure 3. A semilogarithmic plot of the antisymmetric component of the displacement 
distribution at fugacity p = 0.206, corresponding to -- 32. 

This exponential behaviour was found previously in the case of 2~ SAWS with the 
direction of the first step fixed [2], but with different scaling dependences of A ( p )  and 
a ( p ) .  By linear regression analysis, we find that a(  p )  - A-”, and A( p )  - with 
Y the correlation length exponent, and z Î 0.35. Thus our analysis suggest that A ( x ,  p )  
has the form 

A ( x ,  p ) -  N z - 2 ”  exp(-bx/A”) (6) 

where b is a constant. 
These results for three-dimensional SAWS in the presence of an excluded needle 

are quite puzzling as there does not appear to be a physical mechanism that gives rise 
to a second independent length, in addition to the correlation length. We therefore 
turn to an analytical study of corresponding RW models in order to gain further insights. 
This study will suggest that the SAW results arise from a relatively slow crossover effect, 
so that there is no new exponent in the problem. 

5. Analytical study of persistence in random walks 

In order to have ( x N ) -  O(1) and (xZ+’)-- N Z k ” ,  one can take a pure random walk, 
with the direction of the first step fixed along +x.  Since each step of the walk is 
independent, the distribution of projected displacements is a symmetric Gaussian 
which is centred at x = 1. Consequently, ( x N ) =  1, and (x%+’) -  NZk“,  with Y =;. 
However, this trivial construction does not reproduce the observed asymmetry of the 
distribution about the persistence length for SAWS. More interesting behaviour is 
provided by the models of a random walk with no immediate returns allowed, and by 
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a random walk in the presence of an excluded point and an excluded line. In the first 
case, the mechanism for the persistence of the initial directional bias is local in character, 
as fixing the first step leads to a short-term memory effect. For the latter two models, 
the repulsion of the respective excluded sets is long-range in nature, and the resulting 
behaviour is useful in interpreting our results for the corresponding SAW models. 

5.1. Random walk with no immediate reversals 

For a random walk which is prohibited from immediately reversing direction at each 
step [lo], we can compute the moments of the displacement distribution exactly. For 
this purpose, we only need to classify walks according to the number of steps in the 
+x and -x direction, and the number of steps in the remaining 2 ( d  - 1) transverse 
directions. Assigning fugacities r, 1 and t, respectively, for these three cases, then the 
statistical weight for all ( N  + 1)-step walks, with the first step fixed in the +x direction, 
is given by the matrix product 

(1 1 l)TN ig) (7) 

where T is the matrix 

and q = 2 ( d  - 1). The generating function for all walks with the first step in the f x  
direction is 

G(r, 1, t )  = (1 1 1)(I+T+T2+.  . .) 0 

( 9 )  

i:) 
- - r ( ( 1 -  I ) [  1 - ( q  - l ) t ]+ qt(1-  I ) }  

[ I  - ( q  - l ) t ] ( ~ -  r ) ( l -  1) - q t [ r ( l  -I)+ /(I  - r ) ] ‘  

The generating function for the kth moment of the difference between the number of 
steps in the +x and - x  directions, 

yields the moments of the displacement distribution via 

Nth term in the expansion of Nk( z )  
(x N ,  - Nth term in the expansion of G( z )  

k -  

The terms in the series for (xh) can be evaluated by direct power-series expansion 
of the generating functions, or by using contour integral techniques. For the first 
moment, we obtain 
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so that the persistence length A = l /q,  is approached exponentially in N. The value 
of A compares fairly well with the corresponding estimates for the SAW model, and 
the agreement improves as d is increased (table 3) .  However, the exponential form 
of the correction terms indicates that the memory of the initial step is lost considerably 
faster than in the SAW model. 

Similar calculations yield (xs") - A( k, d )  N k ,  with A( k, d )  depending on k and 
d, while the higher cumulants approach dimension-dependent constants as N + CO. 

This leads to the skewness of the distribution approaching zero as N-3'2, which is 
faster than the rate at which the skewness vanishes for the corresponding SAW model. 
Thus the random walk with no immediate returns accounts for the asymptotic behaviour 
of the moments in the corresponding SAW problem, but not for the rate at which this 
asymptotic behaviour is attained. We attribute this discrepancy to the short-range 
nature of the correlations for this type of random walk. 

5.2. Random walk with an excluded poini 

For RWS which start one lattice spacing from an excluded point, the moments of the 
displacement distribution can be calculated by the generating function formalism 
[ l ,  3-51. Following Weiss [l], we study the behaviour of U N ( r ) ,  the probability that 
a random walk is at r after N steps, when the lattice has a 'sticky' site at s. This 
probability distribution obeys the recursion relations 

The second equality expresses the fact that if the walker reaches s it 'sticks' there 
permanently. In terms of the generating function 

X 

u(e, z ) =  C C u N ( r ) z N  e+' 
N=O r 

the above recursion relations lead to 

( l  - z )  ) z ,  = 1 - zA ( e )  :I': :: (1 - (1 - zA(B)) 
+- 1 

(16)  

where A ( e )  is the structure function for the walk, and F ( s ,  z )  is the generating function 
for the first passage probability, F N ( s ) ,  that the walk reaches s for the first time on 
step N. 

The dis:ribution of the subset of walks that remain untrapped at step N, U h ( r ) ,  
is simply given by 

(17)  

i.e. the probability of being at s is subtracted from the probability distribution. The 
corresponding generating function can be written as [ 13 

uk(r) = LJN(r) - U N ( S ) 6 , ,  

1 - ~ ( s ,  z )  uye, Z )  = 
1 - z h ( 8 )  ' 

For an excluded point located at s = (-1, 0, 0, . . .), and with the random walk starting 
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at the origin, the moments of the displacement in the x direction can be obtained from, 

(19 )  
Nth term in the expression of ( - ia /aex )kU’ (  e, Z ) I ~ = ~  

Nth term in the expansion of U’(0, z )  (Xk)  = 

From the asymptotic forms of F(s ,  z ) ,  given by Lindenberg et a1 [ 113, we find that the 
mean displacement converges to a finite dimension-dependent value as N + CO: 

f s d  A =- 
1 -fsd 

where fsd is the probability of ever reaching the point s in d dimensions. In three 
dimensions fsd has been evaluated for several values of s [3], and the corresponding 
value of A is given in table 3, along with approximate values in four and five dimensions. 
These persistence lengths agree quite closely with the corresponding values found in 
the SAW model, even in three dimensions, where excluded-volume effects are still 
relevant. Furthermore, the series for ( x N )  approach their respective asymptotic values 
at a power-law rate, the higher odd moments scale as (x%+’) - N k ,  and the cumulants 
exhibit a pattern of behaviour which is similar to that of SAWS. Thus we conclude that 
the behaviour of SAWS and RWS in the presence of an excluded point is quite close. 

5.3. Random walk with an excluded line 

We now turn to the problem of a random walk in the presence of an excluded needle 
to compare with the results of the corresponding SAW model. We first compute the 
survival probability and the mean displacement from the solution to the diffusion 
equation with appropriate boundary conditions [ 12- 141, and then provide heuristic 
arguments that lead to the same results. 

In two dimensions, the diffusion equation is 
1 ap a2P 1 aP 1 a2p __- -  - +- -+- - 
D at  ar2 r ar r 2 a e 2  

where P = P(r ,  8, t )  is the probability that a diffusing particle is at ( r ,  0, t ) ,  and D is 
the diffusion coefficient. We are interested in solving this equation subject to absorbing 
boundary.conditions on the half-line x < 0, y = 0. This boundary condition accounts 
for the exclusion of the random walkers from the half-line. More generally, consider 
a wedge geometry (figure 4) of opening angle Bo, which extends from 6 = -00 /2  to 

Figure 4. A random walk moving within an absorbing cone of opening angle e,,. 
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8 = Bo/2, with the boundary condition 

P ( r , O , t ) = O  for e = r te , /2 .  ( 2 2 )  

The excluded needle problem is the limiting case 8, = 2 ~ .  Without loss of generality, 
we choose the initial condition 

P ( r ,  e,O) = 8 ( r - r f ) 8 ( 0 ) .  (23)  

To solve (21), we perform a Fourier transform on the variable f3 in the finite range 
101 s 8 , / 2 ,  leading to 

1 a P  a2P 1 a P  V* - ----+ - p 
D a t  ar2 r ar r2 

where P is the Fourier-transformed function, v = (1  + 2 n ) ~ /  Bo, and n is a positive 
integer. Next we eliminate the radial variable, by introducing the Hankel transform 
r121, 

H,[u(r)]  = lom r J v ( a r ) v ( r )  dr 

and the corresponding inverse transform 

Here J , ( x )  is the Bessel function of order v. This transform has the property that 

The resulting first-order ordinary differential equation in time can then be solved 
straightforwardly, and the final solution is then obtained by inverse transforms. This 
procedure yields 

where I , ( z )  is the modified Bessel function. For asymptotic behaviour, we consider 
only the lowest-order Bessel function in the limit of small argument. We find for r >> r', 

P ( r ,  e, t ) - - ( - )  1 r T / ' O  exp(-&) cos(;) 

t t  

from which the survival probability, S ( t ) ,  and all the moments of the displacement 
along the wedge axis can be obtained. Integrating the above probability distribution 
over the accessible spatial region, gives S (  t )  - t-'"2'o. (This result can also be obtained 
by image methods when 8, is an integer.) Thus for 8, = 2 ~ ,  i.e. the excluded needle 
problem, S (  t )  vanishes as t - ' /4.  More interestingly, the mean displacement varies as 
(x( t ) )  - A( 80)t1'2, with A( e,) a smooth non-singular function of 0,. Thus the exponent 
in the time dependence of (x( t ) )  is independent of the opening angle of the wedge. 
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In three dimensions, the solution to the analogous excluded cone geometry, with 
the same initial and boundary conditions as in the two-dimensional problem, is given 
by Carslaw and Jaeger [ 121 in terms of a sum over the non-integral Legendre functions 

where 

with p = cos 0 and po = cos( 0 0 / 2 ) .  The summation is carried out over the non-integral 
set of U values for which P y ( p o )  = 0, thus satisfying the boundary conditions. Owing 
to a logarithmic divergence of P,,(po) as po+ -1, we first consider Bo close to 2 ~ ,  and 
then examine the limiting behaviour as po + - 1. 

From (30), the survival probability is 

where we have retained only the asymptotically dominant term with the lowest index 
of the Bessel function, yo ,  and z = rr‘/2Dt. As in the two-dimensional case, the Bessel 
function can be approximated as I u 0 + 1 , 2 ( 2 )  - Z ” O + ~ ’ ~  as z + 0, and the integral over the 
radial variable yields a factor of r - ” O I 2 .  

To perform the angular integral, note that for 60 close to 27r, the zeros of the 
Legendre 
0, 1 ,2 , .  . * 

while the 
[15,161 

function are very nearly integral, taking on values v, = s + E , ,  where s = 
[15]. The lowest zero has the value 

yo= [in(-)] 2 
1+po 

(33 )  

corresponding lowest-order Legendre function has the approximate form 

That is, this function is nearly constant, except for a small conical region about the 
needle. Thus the integral over the angular variable approaches the value 2 as po + - 1 ,  
and we conclude that the survival probability in three dimensions scales as f - ” o ’ 2 ,  with 
uo+O as O O + 2 r .  

The mean displacement can be calculated similarly, and we find (x( t ) )  - A( O o ) t ’ ” .  
However, in contrast with the two-dimensional case, A( 0,) - [ln( 1 + po)]-I + 0 as 
po+ - 1 .  This singularity in the amplitude can be viewed as modifying the leading 
asymptotic behaviour of ( x ( t ) )  in the following sense. For a discrete random walk, 
the minimal lateral distance to the needle is one lattice spacing, and it therefore has 
an ‘effective’ opening angle which vanishes no faster than N-’12, where N is the 
number of steps in the walk. Employing this effective opening angle in the amplitude 
function A( e,.,), we find that it vanishes as l /( ln N ) .  Thus this line of reasoning suggests 
that for a discrete random walk, ( x N ) -  N1lz/ln N. 

We now provide a qualitative argument which reproduces the results obtained from 
the solution to the diffusion equation. Our argument for the behaviour of the first 
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moment is based on the fact that if the excluded set is viewed as being ‘sticky’ rather 
than absorbing, then the mean displacement of all walks, both trapped and untrapped, 
is zero [l]. That is 

ptr(N)(x,r(N))+pun(N)(xun(N)) = 0 (35) 

or 

where p , , ( N )  and pUn(N) are the probabilities of being trapped and untrapped, 
respectively, by the Nth  step, and ( x (  N ) )  are the corresponding displacements of the 
trapped and untrapped walks. 

To compute these quantities, we appeal to a physical picture in which the random 
walk motion parallel and perpendicular to the needle are treated separately (figure 5 ) .  
We first exploit this construction to compute the time dependence of the trapping 
probability. In two dimensions, when x < 0, then the motion in the y direction is that 
of a one-dimensional random walk with a trapping point at y = 0. This would yield a 
survival probability after n steps which decays as n-’”.  However, when x > 0, there 
is no trapping. The time intervals over which the walk is in the regions x > 0, and 
x<O grow as n1’2.  Accordingly, a plot of the survival probability on a double 
logarithmic scale would exhibit an alternating sequence of inclined intervals of slope 
-4, when x < 0, and intervals of slope 0, when x > 0. On a logarithmic scale, these 
intervals have approximately the same length. This implies that the survival probability, 
p u n ( n ) ,  decays as t ~ - ’ ’ ~  (figure 6 ) .  In three dimensions, this same argument leads to 
p , , ( n )  decaying at the same rate as that of a random walk with an excluded point in 
two dimensions, i.e. as l / ln  n, except that the amplitudes in the two problems are 
different. 

We now use these results for the survival probability to compute the mean displace- 
ment of the untrapped walks. In two dimensions, p , , ( n )  decaying as n-”4  implies 
that p t r ( n ) ,  the probability of being trapped by the nth step, approaches unity as 

A 
Perpendicular Y 

b 
X 

Figure 5. Schematic illustration of the decomposition of random walk motion into com- 
ponents parallel and perpendicular to the axis of the needle. Perpendicular to the axis, 
the motion is that of a ( d  - 1)-dimensional random walk with an excluded point at the 
origin, when x < 0. 
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. 
Ln t 

Figure 6. A double logarithmic plot of the expected behaviour of the survival probability 
for a two-dimensional random walk in the presence of an excluded needle. The average 
slope of the composite behaviour is -1/4. 

1 - n-'l4. Thus the probability of being trapped at the nth step, q(n) = ap,,(n)/an - 
n-5/4 . Consequently, 

-(xtr( N))  = 
N 

(probability of hitting line at step n )  x (displacement at step n )  
n 

(37) - n-5/4n1/2 - 
n 

This leads to 

(xun(N))=( l  -N-1/4)N1/4N1/4- N112. (38) 
Similarly, in three dimensions, p,,(n) decaying as l / ln n implies that p,,(n) - 

1 - l / ln n, leading to q(n)  - l /(n(ln n)'). This then yields 

Finally, for (xu,,( N)), we obtain 

It is very instructive to compare these asymptotic results with numerical data based 
on computing the exact probability distribution and mean displacement for a random 
walk in the presence of the excluded line. From these data, we calculate the finite-N 
approximants, vN, which describe the divergence of (xN), by taking the slope of the 
line that joins (xN) and (xN+2) on a double logarithmic scale. Upon plotting the vN 
against 1/N, it appears that the vN extrapolate to a value of approximately 0.55 for 
N 6 25, and it is only for larger values of N that an unambiguous crossover to the 
asymptotic value of v ~ + ~  = $ is seen (figure 7(  a)). In three dimensions, the values of 
vN appear to extrapolate to a value close to 0.365 for N d 100 when plotted against 
1/ N. However, at the largest values of N, there is a small upward curvature to the 
data, which is indicative of a logarithmic correction (figure 7(b)) .  In fact, for the 
sequence y N  = N'/*/ln N, the vN - f - ( l / ln  N ) + .  . . , and a plot of vN against 1 / N  
would very slowly approach the asymptotic value of f with an infinite slope. This 
behaviour closely mirrors what is observed in the RW data. Thus in both the two- and 
three-dimensional problems there is a very slow crossover to the asymptotic behaviour. 
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Figure 7. A plot of the exponent uN against 1/N for random walks in the presence of an 
excluded needle in (a )  two dimensions and ( 6 )  three dimensions. 

6. Discussion 

In summary, we have studied the repulsion effects of excluding either a single point, 
or a half-line, on the asymptotic behaviour of the distribution of endpoint displacements 
of random and self-avoiding walks, as a function of the spatial dimension. In three 
and higher dimensions, the repulsion effect due to excluding a single lattice point is 
relatively weak. The first moment of the displacement converges to a finite value at a 
power-law rate, while the higher odd moments, (x%+’)  scale as NZk”.  

The disappearance of the repulsion effect arising from an excluded site in three 
and higher dimensions motivated us to consider the general question of what is the 
minimal initial bias necessary to give rise to long-range repulsion, i.e. a diverging first 
moment, for random and/or self-avoiding walks as a function of the spatial dimension. 
To begin to address this general question, we investigated the repulsion effect of an 
excluded half-line, or needle. For SAWS in the presence of this excluded set, exact 
enumeration data indicate that ( x N )  - N ” ,  and that (x%+’)  - N ( 2 k + 1 ) v  , in two 
dimensions. However, in three dimensions, the available numerical data suggest that 
(x%+’) diverges NztZku, where a new exponent, 21.0.35,  is apparently needed to 
characterise the distribution of endpoint displacements. 

In order to help interpret this puzzling result, we also investigated the repulsion 
of random walks to the presence of an excluded needle and, more generally, the 
repulsion of random walks within an absorbing cone of opening angle B o ,  for which 
the excluded needle problem obtains in the limit Bo+ 27r. The solution to the diffusion 
equation for this geometry indicates that the mean axial displacement away from the 
tip of the cone increases as independent of B o ,  even though the survival probability 
depends on the spatial dimension, and on Bo.  In three dimensions, however, the 
amplitude of ( x ( t ) )  vanishes as B0+2rr, and the continuum approach does not easily 
yield the form of ( x (  t ) )  in the excluded needle limit. However, for this case heuristic 
arguments suggest that ( x N )  - N”’/ln N for discrete random walks. 

The corresponding numerical data for ( x N )  are consistent with these theoretical 
predictions. However, indications of asymptotic behaviour are not evident until rela- 
tively large values of N. This slow crossover possibly stems from the relatively large 
spatial region that the random walk must explore before the extent of the excluded 
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set is ascertained. This crossover may also be the source of our unusual results for 
SAWS in three dimensions. Indeed, within a mean-field approximation, the number of 
contacts of an N-step SAW with a semi-infinite line is $finite as N + m .  This would 
suggest that (x,) should also reach a finite limit as N + CO. This argument may be too 
crude, however, as the number of contacts of an N-step random walk with a semi-infinite 
line diverges as In N, and this small degree of repulsion appears to give rise to ( x N )  
diverging as N”*/ln N. Owing to this sensitivity of displacement on the degree of 
repulsion, we cannot definitively exclude the possibility that ( x N )  diverges for three- 
dimensional SAWS in the presence of an excluded needle. 

Our results also raise the general question of the nature of the repulsion of a walk 
which starts at the tip of a d’-dimensional half-hyperplane embedded in a d -  
dimensional space. A natural expectation is that this general phenomenon would be 
characterised only by the codimension, d - d ’ ,  of the excluded set with respect to the 
embedding space. The extent to which this expectation does not hold in our studies 
suggests that the mechanism underlying the repulsion for half-hyperplane perturbations 
deserves further study. It may also prove to be fruitful to investigate the repulsion 
due to excluded sets of finite extent. For example, the excluded point and the excluded 
needle problem can be regarded as the extreme limits of an excluded finite-length 
needle problem in which the needle length goes to 0 or CO, respectively. New insights 
into the general nature of the repulsion may be gained by investigating the crossover 
effects in this more general model. 
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